

FIXM v1.0 Developer’s Manual

Executive Summary: The realm of flight control has evolved
extremely rapidly in the previous decades from using localized,
uncoordinated systems to implementing national, highly integrated
systems. Now the expansion of air travel requires another step:
trans-national integration of flight control systems. This effort
requires many standardization steps; one of the most important first
steps is the common definition of the data that constitute a “flight.”
FIXM (Flight Information Exchange Model) provides the models that
implement this process. When a majority of flight control systems are
able to read and write flight messages in a common FIXM format,
they will be able to coordinate the handling of air traffic seamlessly.
This report offers advice and direction to data modellers and
programmers who need to extend, modify, or maintain the FIXM
logical and physical data models.

16th August 2012

Edition: 1.0

Change History
Version Date Author Reason for

change
0.1 26th March 2012 M. Tanino (FAA)

H. Lepori
(Eurocontrol / SESAR)

Reformatted

0.2 17th April 2012 B. Taylor
 (Lincoln Lab)

Update

0.3 25th May 2012 B. Taylor
(Lincoln Lab)

Updated with review
comments

0.4 1 June 2012 B. Taylor
(Lincoln Lab)

Updated with review
comments

0.9 2 July 2012 B. Taylor
(Lincoln Lab)

Release Candidate

1.0 16 Aug 2012 B. Taylor
(Lincoln Lab)

V1.0 Release

 Page 1 of 71

Table of Contents
1	 INTRODUCTION .. 4	

1.1	 FIXM LOGICAL STRUCTURE ... 4	
1.2	 COMPATIBILITY WITH EXISTING STANDARDS.. 4	
1.3	 A NOTE ON EXAMPLES.. 5	
1.4	 REFERENCES... 5	

2	 FIXM UML MODEL .. 6	

2.1	 SCHEMA PACKAGE STRUCTURE ... 6	
2.1.1	 Main UML Constructs... 6	

3	 FIXM XML SCHEMA (FIXM) .. 9	

3.1	 SCHEMA STRUCTURE / ORGANIZATION .. 9	
3.2	 NAMESPACES .. 9	
3.3	 XML VALIDATION .. 10	
3.4	 FIXM SCHEMA DESIGN PRINCIPLES AND COMMON PATTERNS .. 11	

3.4.1	 Features and Complex Types... 11	
3.4.2	 Simple Types ... 12	
3.4.3	 Inheritance ... 13	
3.4.4	 Expressing Alternate Data Types... 13	
3.4.5	 Use of Attributes ... 14	
3.4.6	 Multi-State Elements .. 14	
3.4.7	 Enumerations .. 15	
3.4.8	 Lexical Patterns... 15	
3.4.9	 Time Elements .. 16	
3.4.10	 Use of Free Text ... 17	
3.4.11	 Flight Identifiers ... 17	
3.4.12	 Embedded Type Definition Discouraged .. 18	
3.4.13	 Provenance.. 18	

3.5	 FIXM XMS SCHEMA NAMING CONVENTIONS.. 19	
3.5.1	 Limitations .. 19	
3.5.2	 InterCap Naming ... 20	
3.5.3	 Functional Naming.. 20	
3.5.4	 Abbreviations ... 20	
3.5.5	 Schema Names... 20	
3.5.6	 Type Names .. 21	
3.5.7	 Element and Attribute Names ... 21	
3.5.8	 Enumeration Names... 21	

4	 FIXM MESSAGING .. 23	

4.1	 THE FIXM MESSAGING MODEL .. 23	
4.2	 MESSAGE FUSION ... 24	
4.3	 THE FIXM ABSTRACTMESSAGE TYPE ... 25	
4.4	 THE FIXM MESSAGECOLLECTION TYPE.. 25	
4.5	 THE FIXM DELTAMESSAGE TYPE.. 25	
4.6	 THE FIXM FLIGHTMESSAGE TYPE... 25	

5	 FIXM EXTENSION MODEL.. 26	

5.1	 FIXM CORE ... 26	
5.2	 FIXM EXTENSIONS ... 26	
5.3	 MERGING EXTENSIONS INTO THE FIXM CORE .. 27	
5.4	 REMOVING ELEMENTS FROM THE FIXM CORE.. 27	
5.5	 CHARACTERISTICS OF EXTENSIONS ... 28	
5.6	 MODELING THE EXTENSION DATA USING UML.. 28	
5.7	 IMPLEMENTING THE EXTENSION SCHEMAS .. 28	

5.7.1	 Follow the FIXM Schema Conventions .. 28	
5.7.2	 Using the FIXM Base Types ... 29	
5.7.3	 Using the FIXM Schema Types.. 29	

 Page 2 of 71

5.7.4	 Follow the FIXM Explicit and Implicit Conventions.. 30	
5.7.5	 Extend the AbstractExtension Object .. 30	
5.7.6	 Extend One or More FIXM Types .. 31	
5.7.7	 Creating Extension Message Types .. 31	

5.8	 FIXM XSD EXTENSION TECHNIQUES .. 32	
5.8.1	 Adding a New Extension Name Space ... 32	
5.8.2	 Adding New Extension Types ... 32	
5.8.3	 Obscuring Core Types ... 33	
5.8.4	 Adding New Elements to Types ... 33	
5.8.5	 Obscuring Elements from Types .. 33	
5.8.6	 Changing Data Type of Elements .. 33	
5.8.7	 Changing Cardinality of Elements.. 34	
5.8.8	 Changing the Pattern of a String Type .. 34	
5.8.9	 Adding Enumeration Values from a String Type ... 34	
5.8.10	 Removing Enumeration Values from a String Type .. 34	
5.8.11	 A Word About the XSD <redefine> Element .. 35	

5.9	 SIMPLE EXTENSION EXAMPLE .. 36	

6	 APPLICATION DEVELOPMENT WITH FIXM .. 37	

6.1	 INTENDED AUDIENCE... 37	
6.2	 EXAMPLES OF FIXM USAGE ... 37	
6.3	 DOM PARSERS ... 38	
6.4	 XML SCHEMA BINDINGS (APACHE XML BEANS) .. 39	
6.5	 XML SCHEMA BINDINGS (JAXB) ... 40	

APPENDIX A	 FIXM GLOSSARY .. 41	

APPENDIX B	 FIXM LOGICAL MODEL UML ... 42	

B.1	 BASEAGENT - (CLASS DIAGRAM).. 43	
B.2	 BASEALTITUDE - (CLASS DIAGRAM) ... 45	
B.3	 BASELOCATION - (CLASS DIAGRAM)... 47	
B.4	 BASETYPES - (CLASS DIAGRAM) .. 49	
B.5	 BASETIME - (CLASS DIAGRAM) ... 51	
B.6	 FXAERODROME - (CLASS DIAGRAM) .. 52	
B.7	 FXAIRCRAFT - (CLASS DIAGRAM) ... 54	
B.8	 FXAIRCRAFCOMMUNICATIONCAPABILITY - (CLASS DIAGRAM) .. 56	
B.9	 FXAIRCRAFTNAVIGATIONCAPABILITY - (CLASS DIAGRAM) .. 58	
B.10	 FXAIRCRAFTSURVEILLANCECAPABILITY - (CLASS DIAGRAM) ... 60	
B.11	 FXAIRCRAFTSURVIVALCAPABILITY - (CLASS DIAGRAM) .. 61	
B.12	 FXFLIGHT - (CLASS DIAGRAM) .. 62	
B.13	 FXFLIGHTEMERGENCY - (CLASS DIAGRAM)... 64	
B.14	 FXFLIGHTPLAN [PART 1] - (CLASS DIAGRAM).. 66	
B.15	 FXFLIGHTPLAN [PART 2] - (CLASS DIAGRAM).. 68	
B.16	 FXFLIGHTROUTE - (CLASS DIAGRAM) .. 69	
B.17	 FXMESSAGES – (CLASS DIAGRAM).. 70	
B.18	 MSGMESSAGE – (CLASS DIAGRAM) .. 71	

 Page 3 of 71

Table of Figures
Figure 1 - FIXM Layered Information Architecture ...4	
Figure 2 - FIXM Layered Schema Structure...6	
Figure 3 - Sample FIXM UML Class Diagram ..7	
Figure 4 - Hierarchy of FIXM Schemas ..9	
Figure 5 - Use of "xsd" name space ...10	
Figure 6 - XSD Name Space Definition ..10	
Figure 7 - Example Complex Type ...11	
Figure 8 - Use of Simple Types for Restriction...12	
Figure 9 - Use of Inheritance ..13	
Figure 10 - Defining Multi-Type Elements using Union and Choice ...14	
Figure 11 - Use of Attributes to Describe Meta-Data..14	
Figure 12 - Representing Multi-State Data ...15	
Figure 13 - Use of Enumerations for Codes ...15	
Figure 14 - Use of Lexical Patterns ..16	
Figure 15 - Definition of GUFI Fields ..17	
Figure 16 - Explicit Declaration of Contained Type: Encouraged...18	
Figure 17 - In Line Declaration of Contained Type: Discouraged...18	
Figure 18 - Defining the Provenance of Data ...19	
Figure 19 - Recording Schema Name and Version..21	
Figure 20 - Naming Enumeration Values ...22	
Figure 22 - Compiling Complete Flight State by Fusing Partial States...24	
Figure 23 - The FlightType Extension List..31	
Figure 24 - Extending FIXM Objects ..31	
Figure 26 - Creating an Extension Message Type ...32	
Figure 27 - Adding Extension Name Space ...32	
Figure 28 - Adding an Element to a Core Type ..33	
Figure 29 - Changing Element Data Type ..33	
Figure 30 - Changing a String Type Pattern...34	
Figure 31 - Extending an Enumeration Type..34	
Figure 32 - Example FIXM ExtensionSample...36	

 Page 4 of 71

1 Introduction
The development of the FIXM information architecture proceeds in several phases:

• Capture the knowledge of aviation experts in the FIXM Data Dictionary.
• Represent the contents of the FIXM Data Dictionary as a set of high level

conceptual UML diagrams (FICM).
• Use both the FIXM Data Dictionary and the FICM model to derive the FIXM

Logical Data Model (FIXM).1
• Use the FIXM Logical Model to derive the XML Schemas that define the

concrete message structure.
• Steps (1) and (2) are best covered by the FIXM Primer document (Reference

1: FIXM Primer (including FICM conceptual model). This document covers
steps (3) and (4) in the list above.

1.1 FIXM Logical Structure
The FIXM information architecture is broken into several layers of representation. In
general, each layer is an elaboration of the layers beneath it, and no layer refers to
information in an outer layer. As Figure 1 illustrates, the FIXM information model is
based on several ISO standards, to assist with compatibility with other data
standards active in the flight management regime.

Figure 1 - FIXM Layered Information Architecture

1.2 Compatibility with Existing Standards
The FIXM information architecture is designed to be compatible with the following
standards:

• Aeronautical Information Exchange Model (AIXM)
• Weather Information Exchange Model (WXXM)

1 Both FICM and FIXM data models are expressed in Universal Modelling Language (UML) format.

ISO 19103 (Basic)

ISO 19107 (Spatial), ISO 19108 (Temporal)

ISO 19130 and others

Flight Information eXchangeObject Model (FIXM)

SESAR
Flight Data Model

FAA
Extensions

Other Stakeholder
Extensions

 Page 5 of 71

• ISO19107 Geographic Information - Spatial Schema

However, “compatibility” has a particular technical meaning: there must exist a clear
algorithm that can convert between FIXM structures and equivalent structures in the
other standards without loss of data in either direction. The FIXM data models, but
are compatible with both AIXM and WXXM because the most basic level of data
representation corresponds to the ISO standards2.

1.3 A Note on Examples
Many of the sections that follow contain examples of UML data models or XML
schema constructs. These examples are chosen to illustrate certain concepts, and
do not necessarily represent elements of the XML schemas, nor do they necessarily
represent elements planned for later FIXM development.

1.4 References
(available at http://www.fixm.aero.)
Reference 1: FIXM Primer (including FICM conceptual model)
 Reference 2: FIXM Data Dictionary v1.0
 Reference 3: FIXM User's Guide
 Reference 4 - FIXM XSD Schemas
 Reference 5 - Enterprise Architect: www.sparxsystems.com

2 See Appendix A: FIXM Glossary for a list of FIXM abbreviations and terms.

 Page 6 of 71

2 FIXM UML Model
The FIXM data architecture is represented in both the logical data model (FIXM) and
the XML Schemas (FIXM). The section describes the structure, content, and format
of the FIXM logical model. The reader is expected to be minimally familiar with the
concepts and notation of UML. It is beyond the scope of this report to provide a UML
tutorial, but Section 2.1.1 describes the basic concepts, and the reader is referred to
the following for a fuller introduction:
http://www.ibm.com/developerworks/rational/library/769.html

2.1 Schema Package Structure
The FIXM models are arranged in a hierarchy, and it is expected that extension
schemas will follow the same pattern. The layers of the hierarchy are:

Figure 2 - FIXM Layered Schema Structure

Elements of the General Flight Layer may refer to elements of the Base Type Layer
and to each other’s elements, and elements of the Flight Extension Layer may refer
to elements of the General Flight Layer, the Base Type layer, and other extensions,
but references in the other direction are explicitly forbidden.

2.1.1 Main UML Constructs
The FICM Model is expressed using class diagrams of the UML data modelling
language: a graphical notation that captures the content and organization of complex
data structures. While it is beyond the scope of this report to provide a
comprehensive introduction to UML, it is important to introduce the basic concepts
and notations. Figure 3 illustrates a typical data model taken from FIXM model.

NAS Extensions

Flight Aircraft

Flight Plan Route

Types

Time

Location

Feature

Base Type Layer

General Flight Layer

Flight Extension Layer

Altitude

Emergency

Capabilities

Agent

 Page 7 of 71

Figure 3 - Sample FIXM UML Class Diagram

2.1.1.1 «choice» (ex: SegmentType)
Choice elements represent exactly one of their contained types, and are often used
when two different data types can appear in the same element of a parent type.

2.1.1.2 «union» (ex: SegmentAirway)
Union elements are similar to choice elements in that they can represent any of
several element types, but they are usually used for simple types: strings, numerics,
etc, where choice elements join more complex structures.

 Page 8 of 71

2.1.1.3 «enumeration» (ex: FlightRules)
An enumeration is a data item that can only take on a fixed set of legal values. For
example, FlightRule can only legally be “VFR”, “IFR”, “IFR/VFR”, “VFR/IFR”.
Because some of these enumerations are lengthy, the reader is referred to the FIXM
Data Dictionary for the complete list of values.

2.1.1.4 «datatype» (ex: Route)
Datatype elements represent units of information managed by FIXM, and almost
always represent items from the FIXM data dictionary. Sometimes a datatype will
directly represent a Data Dictionary element, and sometimes it will encapsulate more
than one element.

2.1.1.5 Relationships (ex: RouteSegment contains SignificantPoint)
The diamond arrow indicates that RouteSegment contains SignificantPoint, and the
multiplicity indicator 0..1 indicates that it optionally contains at most one point.
Relationships are tagged with a “multiplicity factor” that indicates how many times
they can occur in valid XML.
“1” occurs exactly once
“0..1” optionally occurs exactly once
“0...*” optionally occurs an unlimited number of times
“1..*” occurs at least once, possibly unlimited number of times

 Page 9 of 71

3 FIXM XML Schema (FIXM)
This section describes in detail the structure, content, and construction of the FIXM
XSD Schemas (FIXM). The reader is referred to Reference 4 - FIXM XSD Schemas
– for availability of the schemas.

3.1 Schema Structure / Organization
The overall FIXM schema is large, so it is divided into several sub-schemas, each
related to a specific aspect of the flight information. Despite this division, the
schemas are to be considered a unified whole, except as described in Section 5,
which describes how to create extension models that can be added to, or subtracted
from the FIXM schemas.
The FIXM schemas are arranged in a hierarchy, and it is expected that extension
schemas will follow the same pattern. The layers of the hierarchy are:

The general rule is that a schema may only refer to schemas below it in the
hierarchy, with no references either to upper-level schemas. Thus, for instance,
FIXM Schemas refers to the Base Objects, but may not refer either to Extension.

3.2 Namespaces
To keep element names from multiple schemas from interfering within an XSD, they
are preceded by a “namespace prefix:”

Base Objects

FIXM Flight Objects FIXM Message Objects

Extension 1 Extension 2 Extension 3

Figure 4 - Hierarchy of FIXM Schemas

 Page 10 of 71

<xsd:element name=”specialFlightType” type=”fx:FlightType”/>

Figure 5 - Use of "xsd" name space

In this example, “xsd:” is the prefix of the XML schema language, and “fx:” is the
prefix for FIXM schemas. Prefixes are defined in the <schema> statement at the top
of the schema, like this:

<xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:fx="http://www.fixm.aero/fx/1.0"

 Figure 6 - XSD Name Space Definition

The name spaces defined in FIXM are:

Prefix URL Description

xsd http://www.w3.org/2001/XMLSchema XML schema objects

base http://www.fixm.aero/base/1.0 FIXM base objects

fx http://www.fixm.aero/fx/1.0 FIXM schemas

msg http://www.fixm.aero/msg/1.0 FIXM message objects

Table 1 - FIXM Name Spaces

3.3 XML Validation
The combined FIXM schemas define precisely what a “well formed XML instance” is.
A particular XML instance can be tested for well-formedness by invoking XML
validation that compares the prescribed schema structure to the actual XML
structure, and reports any discrepancies. Some aspects of validation that are
supplied by the XML schemas:

• What element must appear, may appear, or may not appear,
• How many times an element may appear,
• Whether an element can take the “nil” value,
• The allowed data types for the element,
• For numeric elements, the precision, max value, min value,
• For string elements, a pattern that describes allowed strings,
• For string elements, a list of the allowed values (enumerations).

If an XML message validates correctly against all these tests, there is a very high
likelihood that its contents are correct. But remember that the content of validated
XML may still be semantically incorrect or nonsensical.

 Page 11 of 71

3.4 FIXM Schema Design Principles and Common patterns
The FIXM schemas are written in a particular dialect of XSD [XML best practices]
that has proven over time to lead to robust, maintainable schemas. A part of that
dialect is to use a fixed set of schema patterns: for every kind of problem, solve it
with the same structure. This section describes the common FIXM patterns so that
the reader can better understand the intent of the schema.

3.4.1 Features and Complex Types
The FIXM schemas provide a special container type called the
“AbstractFeatureType” for data that is to be managed as a unit. Many of the complex
types inherit from the AbstractFeatureType. The AbstractFeatureType serves as a
marker to applications and utilities that the contents of the type are indivisible, and
that the object is to be treated as a unit.

<xsd:complexType name="ArrivalType">
 <xsd:complexContent>
 <xsd:extension base="base:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="arrivalAerodrome" type="fx:AerodromeType"/>
 <xsd:element name="arrivalTimes" type="fx:ArrivalTimesType"/>
 <xsd:element name="arrivalTaxiRoute" type="fx:TaxiRouteType"/>
 <xsd:element name="arrivalTerminal" type="fx:TerminalType"/>
 <xsd:element name="arrivalRunway" type="fx:RunwayNameType"/>
 <xsd:element name="arrivalSpot" type="fx:SpotNameType"/>
 <xsd:element name="arrivalGate" type="fx:GateType"/>
 <xsd:element name="arrivalFix" type="fx:PredefinedFixType"/>
 <xsd:element name="arrivalSpace" type="fx:ParkingSpaceType"/>
 <xsd:element name="arrivalPhase" type="fx:ArrivalPhaseType"/>
 <xsd:element name="alerts" type="fx:FlightAlertType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 7 - Example Complex Type

 Page 12 of 71

3.4.2 Simple Types
Simple types are most commonly used to define a set of enumerations for a value, or
to define a string pattern, high and low bounds, or other restrictions on the data.
 <xsd:simpleType name="BearingType">
 <xsd:restriction base="xsd:double">
 <xsd:minInclusive value="0.0"/>
 <xsd:maxInclusive value="360.0"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LatitudeType">
 <xsd:restriction base="xsd:double">
 <xsd:minInclusive value="-90.0"/>
 <xsd:maxInclusive value="90.0"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LongitudeType">
 <xsd:restriction base="xsd:double">
 <xsd:minInclusive value="0.0"/>
 <xsd:maxInclusive value="360.0"/>
 </xsd:restriction>
 </xsd:simpleType>

 Figure 8 - Use of Simple Types for Restriction

 Page 13 of 71

3.4.3 Inheritance
The structure of the FIXM schema depends heavily on an inheritance tree that
propagates types and attributes down from the most general objects to the most
concrete. Almost always, the root object of an inheritance tree is an abstract object
with a name of the form, “Abstract…”. It is very common for the abstract root object
to be used in extension schemas so that any of the extension objects can be
substituted in its place.

<xsd:complexType name="AbstractFixType" abstract="true">
 <xsd:annotation>
 <xsd:documentation>
 The Fix type encodes all information about navigational fixes of
 various types. The kind of fix is encoded in the "type" attribute.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="text" type="base:FreeTextType" />
 </xsd:sequence>
 <xsd:attribute name="type" type="fx:FixTypeType"/>
</xsd:complexType>

<xsd:complexType name="RadialFixType">
 <xsd:complexContent>
 <xsd:extension base="fx:AbstractFixType">
 <xsd:sequence>
 <xsd:element name="distance" type="base:DistanceType" />
 <xsd:element name="radial" type="base:BearingType" />
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="AltFixAltAltitudeType">
 <xsd:complexContent>
 <xsd:extension base="fx:AbstractAltitudeType">
 <xsd:sequence>
 <xsd:element name="before" type="fx:AbstractAltitudeType"/>
 <xsd:element name="fix" type="fx:AbstractFixType"/>
 <xsd:element name="after" type="fx:AbstractAltitudeType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 9 - Use of Inheritance

3.4.4 Expressing Alternate Data Types
Some situations require that the schema express any of several alternative values.
These situations can be met by inheritance, but it is often difficult to construct the
correct inheritance tree. The alternative constructs are the <choice> selector and
the <union> value type. The following example shows how to use both of these to
achieve a schema element that can take on a set of value types.

 Page 14 of 71

<xsd:simpleType name="RouteNameType">
 <xsd:union memberTypes="fx:Sid fx:Plus fx:Star fx:Direct
 fx:Victor fx:Jetway fx:GpsRnav
 fx:ArRoute fx:OtherRoute"/>
</xsd:simpleType>

<xsd:complexType name="SignificantPointType">
 <xsd:choice>
 <xsd:element name="location" type="base:GeographicLocationType"/>
 <xsd:element name="fix" type="base:WaypointLocationType"/>
 <xsd:element name="relative" type="base:RelativeLocationType"/>
 </xsd:choice>
</xsd:complexType>

Figure 10 - Defining Multi-Type Elements using Union and Choice

3.4.5 Use of Attributes
In a complex element structure, information can be conveyed in two ways. The first,
the <element> structure is the most familiar: it represents the data that makes up the
type. The second, the <attribute> structure contains meta-information that describes
the type itself.
The FIXM schemas use attributes in situations like the following, where the “code”
attribute provides the ICAO standard code for the originator’s address.

<xsd:complexType name="OriginatorType">
 <xsd:complexContent>
 <xsd:extension base="base:AbstractAgentType">
 <xsd:attribute name="code" type="fx:AftnAddressType"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="AftnAddressType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{8}"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 11 - Use of Attributes to Describe Meta-Data

3.4.6 Multi-State Elements
Flight data evinces a repeating pattern: units of data that change state over time. For
instance, the Flight Plan may proceed through a set of states:

• Proposed in Planning
• Proposed with Departure Pending
• Accepted and Active

The standard pattern for these multi-state types in FIXM is to associate a “state”
attribute with the complex type. Then, when the time element changes state at run
time, its state attribute is changed along with its time value.

 Page 15 of 71

<xsd:complexType name="FlightPlanType">
 <xsd:sequence>
 . . .
 </xsd:sequence>
 <xsd:attribute name="state" type="fx:FlightPlanStateType"/>
</xsd:complexType>

<xsd:simpleType name="FlightPlanStateType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PROPOSED_PLANNED"/>
 <xsd:enumeration value="PROPOSED_PENDING"/>
 <xsd:enumeration value="ACTIVE"/>
 </xsd:restriction>
</xsd:simpleType>

 Figure 12 - Representing Multi-State Data

3.4.7 Enumerations
Many of the elements in the FIXM schemas can only take a fixed set of values,
usually representing an encoding of data. These fields are called “enumerations” and
are explicitly represented in FIXM by a simpleType that restricts the primitive string
type:
<xsd:simpleType name="FlightRulesType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="IFR"/>
 <xsd:enumeration value="VFR"/>
 <xsd:enumeration value="IFR_VFR"/>
 <xsd:enumeration value="VFR_IFR"/>
 <xsd:enumeration value="OTHER"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 13 - Use of Enumerations for Codes

3.4.8 Lexical Patterns
For character data, the FIXM schemas try, whenever possible, to enforce legal
lexical rules. The most obvious rules concern minimum and maximum lengths, which
are enforced by the “minLength” and “maxLength” attributes. More challenging are
the rules that govern text content. For example, consider these flight identifiers:
 AAL283 (legal)
 BA929 (legal)
 EGF9384 (legal)
 AAL1 (legal)
 ua128 (not legal)
 EGF8A8 (not legal)

 Page 16 of 71

The pattern of these flight identifiers can be described as “at least one and at most
four capital letters followed by at least one and at most four digits”, and is captured in
the following regular expression3:
 [A-Z]{1,4}[0-9]{1,4}

Regular expressions are used extensively in the description of free text fields to
constrain their lexical form, as in the following:
<xsd:complexType name="AircraftIdentificationType">
 <xsd:complexContent>
 <xsd:extension base="base:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="acid" type="fx:AcidType"/>
 <xsd:element name="callSign" type="fx:CallSignType"/>
 <xsd:element name="beaconCode" type="fx:BeaconCodeType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="ComputerIdentificationType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="8"/>
 <xsd:pattern value="[A-Z0-9]{1,8}"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="AcidType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="7"/>
 <xsd:pattern value="([A-Z][0-9])|([A-Z][A-Z0-9][A-Z0-9]{0,5})"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="BeaconCodeType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="4"/>
 <xsd:pattern value="[0-7]{4}"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 14 - Use of Lexical Patterns

3.4.9 Time Elements
Most of the types in the FIXM schema involve time in one way or another; the FIXM
base schemas provide a full set of time types:

• SimpleTimeType
Date/time to millisecond resolution

• DurationType
Amount of elapsed time since a reference event

• TimeSpanType
Period of time with a defined beginning and end time.

3 It is beyond the scope of this manual to document regular expressions. See
http://en.wikipedia.org/wiki/Regular_expression for further information.

 Page 17 of 71

FIXM also provides a set of extension time objects that have two contents: the
estimated time and the actual time. These are to be used to record both the planned
event and the actual event. They are distinguished by the prefix “Multi”:

• MultiTimeType
• MultiDurationType
• MultiTimeSpanType

3.4.10 Use of Free Text
The FIXM schemas manage to capture most of the data about a flight in well-
structured types, but inevitably there are data that must be represented as free text:
notes, or names, or addresses, etc. For these situations, FIXM provides the
FreeTextType in preference to the XSD string type.

3.4.11 Flight Identifiers
Flight data fusion (see Section 4.2) relies on being able to uniquely identify the flight
to which data belong, and this is the role of the Globally Unique Flight Identifier
(GUFI), normally found in the flight/gufi element. It is beyond the scope of the FIXM
standard to specify how an when GUFIs are created, or assigned to flights, but every
flight must be identified by its GUFI before it can be placed in a message and
broadcast to other applications. GUFI instances have the following format:
 region.organization.creation.qualifier

Field Description Examples

Region Geographic region where flight was
created

“us”, “eur”

Organization Agency that created the flight. Agencies
are not limited to air traffic control
authorities, but may include airlines,
commercial flight plan companies, or
even individual pilots.

“ZFW” (center)
“UAL” (airline)
“cfmu” (FIR)
“n1945bl” (tail number)

Creation Date and zulu time at which the GUFI
was created, accurate to second
resolution.

20120512T174322Z

Qualifier Extra characters required to ensure
complete uniqueness of the first three
fields. Usually an auto-incremented
integer.

“00837”

Figure 15 - Definition of GUFI Fields

 Page 18 of 71

3.4.12 Embedded Type Definition Discouraged
When a complex type logically contains another type, the XSD language provides
two ways of writing the structure. The schema may contain a named type for the
contained type that is simply referenced in the containing type, or the contained type
definition may appear directly in the containing element. In FIXM schemas, the first
approach, specifically declaring the contained type, is preferred, and the second,
declaring the type in line, is discouraged. The following figures illustrate the two
approaches.

<xsd:complexType name="FlightType">
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element name="gufi" type="fx:GlobalUniqueIdentifierType""/>
 <xsd:element name="acid" type="fx:AircraftIdentifierType" />
 <xsd:element name="flightPlan" type="fx:FlightPlanType" />
 <xsd:element name="flightEvent" type="fx:AbstractFlightEventType" />
 <xsd:element name="extension" type="base:AbstractExtensionType""/>
 </xsd:sequence>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="AircraftIdentifierType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]+[A-Z0-9]*"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 16 - Explicit Declaration of Contained Type: Encouraged

<xsd:complexType name="FlightType">
 <xsd:complexContent>
 <xsd:sequence>
 <xsd:element name="gufi" type="fx:GlobalUniqueIdentifierType""/>
 <xsd:element name="acid"/>
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]+[A-Z0-9]*"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="flightPlan" type="fx:FlightPlanType" />
 <xsd:element name="flightEvent" type="fx:AbstractFlightEventType" />
 <xsd:element name="extension" type="base:AbstractExtensionType""/>
 </xsd:sequence>
 </xsd:complexContent>
</xsd:complexType>

Figure 17 - In Line Declaration of Contained Type: Discouraged

3.4.13 Provenance
In some situations, it is important to record where an item of data came from:

• Automated system like TFDM or ERAM
• Human like an ATC or pilot

For this situation, FIXM provides an attribute group named “ProvenanceAttr” that
contains two attributes:

 Page 19 of 71

• System
The name of the system that produced the data

• Center
The ATC center (Flight Information Region) in which the data was produced

• Source
The source of the data in the message (unstructured text)

To indicate that a type should be tagged with its provenance, add the
“ProvenanceAttr” group to its definition. Note that the base type AbstractFeatureType
is already tagged with ProvenanceAttr, so if your type extends from
AbstractFeatureType specifying this would be redundant. And, since
AbstractFeatureType is used for any type that groups elements that should be
treated as a unit, there will always be a place to record provenance: on the element
itself or on its containing feature.

<xsd:complexType name="RouteType">
 <xsd:complexContent>
 <xsd:extension base="base:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="text" type="fx:RouteTextType"/>
 <xsd:element name="segment" type="fx:RouteSegmentType"/>
 <xsd:element name="externalRemarks" type="base:FreeTextType"/>
 </xsd:sequence>
 <xsd:attributeGroup ref=”base:ProvenanceAttr”/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 18 - Defining the Provenance of Data

3.5 FIXM XMS Schema Naming Conventions
As the FIXM schema grows and other, related, schemas accrete around it, all of the
schemas should bear a family resemblance so that programmers and subject matter
experts can easily read and understand the schemas. Part of this standardization is
to define a strategy for naming the components of a schema. The rules in this
chapter are not meant to limit the schema developer's options, but to standardize the
purely mechanical naming conventions so that he or she can concentrate on the
more important semantic content.

3.5.1 Limitations
The rules in this chapter pertain only to names of the elements of a schema, not to
their semantic content or their structure. Those topics are also important, but are
covered by other chapters of this document. There will always be special situations
in which these rules will increase the schema complexity, rather than decrease it as
desired. In these situations, relax these rules only as much as needed to achieve a
compact, understandable schema. These exceptional situations should be very rare,
so if you find many of these situations, review your schema development practice
and tools, because it is easy to misunderstand the usage of these rules.

 Page 20 of 71

3.5.2 InterCap Naming
The "InterCap" convention is sometimes called "camel case" and is the practice of
separating words of a multi-part name by capitalizing the initial character of each
word.

• The initial character of the first word appears in lower case for element and
attribute names "aerodromeLocation.

• The initial character of the first word appears in upper case for type names:
“FlightPlanType”.

• When abbreviations and acronyms appear within a name their case must
conform to InterCap: "departureEdct", not "departureEDCT".

3.5.3 Functional Naming
Components of the schema should be named to be suggestive of their function, so
that a new reader is likely to understand the purpose of the field
"controllerRunwayAssignment" not "controllerAssignment".

3.5.4 Abbreviations
In general, full words are preferred to abbreviations within names:
"preferredDepartureFix", not "prefDepFix".

• Exception: when the term is a well-recognized industry term and the
expanded form would be more confusing than the abbreviation: "EDCT" not
"estimatedDepartureClearanceTime", "ETD", not
"estimatedTimeOfDeparture".

• Exception: when fully expanding the words leads to a name so long it is likely
to be more confusing than the abbreviation: not
"AirportConfigApprConditionType", not
"AirportConfigurationApproachConditionType".

3.5.5 Schema Names
FIXM Schema names are recorded in the “version” attribute of the <schema>
element, followed by the version number of the schema. By convention, the name of
the schema begins with the name space prefix assigned to it: in this case, “fx”.
Schemas should be recorded in files with names of the form:
 <schema name>.xsd

 Page 21 of 71

<xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:fx="http://www.fixm.aero/fx/1.0"
 xmlns:base="http://www.fixm.aero/base/1.0"
 targetNamespace="http://www.fixm.aero/fx/1.0"
 elementFormDefault="qualified"
 attributeFormDefault="qualified"
 version="fxFlightPlan:1.0">

Figure 19 - Recording Schema Name and Version

3.5.6 Type Names
Simple and complex types that appear at the top level of the schema are referred to
simply as "types,"

• Type names appear in InterCap notation with initial capital letter.
• Type names end in the word "Type".

• Abstract types (those with attribute abstract="true") begin with the word
"Abstract".

Examples: "RouteSegmentType", "AircraftIdentificationType",
"AbstractMessageType".

3.5.7 Element and Attribute Names
Elements and attributes are the lowest level components of a schema, and a single
item of data, or a structured piece of data defined in a type.

• Element and attribute names appear in InterCap notation with lower case
initial letter.

• Element names always take the singular form, even if the maximum
occurrence is unbounded.

3.5.8 Enumeration Names
When simple types are used to represent enumeration values, the enumerations
should follow the following rules:

• Characters are restricted to upper-case A through Z, digits 0-9, and
underscore.

• Underscores are used to separate words in the string
• Abbreviations are encouraged if they keep the words to manageable length

 Page 22 of 71

<xsd:simpleType name="FlightRulesTypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="IFR"/>
 <xsd:enumeration value="VFR"/>
 <xsd:enumeration value="IFR_VFR"/>
 <xsd:enumeration value="VFR_IFR"/>
 </xsd:restriction>
</xsd:simpleType>

Figure 20 - Naming Enumeration Values

 Page 23 of 71

4 FIXM Messaging
FIXM defines a standard message architecture for transmitting flight information
using the FIXM data model. While FIXM cannot mandate use of this message
architecture, and the FIXM data model may be embedded in other message
protocols, it is strongly recommended that FIXM data be transmitted using the FIXM
message protocol, because the message structure was designed to operate
efficiently within that protocol.
The standard FIXM message comprises two parts: the message metadata and the
message payload. The payload may be any FIXM element that extends from the
FIXM AbstractFeatureType, but typically it is a Flight type. In fact, that use is so
common that FIXM defines a dedicated FlightMessageType.
The metadata is intended to uniquely identify the message and contain minimal
information to allow efficient searching in an archival geographic database. The
metadata includes:

• Unique message identifier (required)
• Message time stamp (required)
• Geographic location where the message was generated (optional)
• Span of time when the message data is considered valid (default: forever)

In addition, the FIXM message protocol defines a container message type that
supports packaging of multiple messages for efficient bulk transmission. It also
provides a generic update mechanism called a “delta” message, that transmits only
changes in the flight’s state.

4.1 The FIXM Messaging Model
Traditional message architectures use multiple message formats to exchange
different parts of the flight’s state. For example, ASDI defines the following “Z”
messages, and each message has a unique set of data and a unique data format:

• Flight plan [FZ]
• Flight plan amendment [AF]
• Departure [DZ]
• Track information, i.e., a position report [TZ]
• Boundary crossing [UZ]
• Flight management information [RT]
• Arrival [AZ]
• Flight plan cancellation [RZ]

By contrast, FIXM provides a single message structure for all information about a
flight, the FlightMessage. Every flight data message in the system contains a FIMX
object which may be incompletely specified. Though any single message may
contain only a small part of the flight’s state, the aggregate of messages about the
flight contains the complete record of the flight. For example, the adapters that

 Page 24 of 71

translate from legacy data formats into FIXM structures might perform the following
mappings4:

ERAM ! Flight.FlightPlan
ASDI ! Flight.FlightStatus
ASDE-X ! Flight.SurfaceMovement
Airline ! Flight.GateInformation

No single adapter publishes the whole flight state, but if an application were to
receive all of these partial Flight messages and integrate their contents, the result
would be a complete state of the flight. Furthermore, because these partial
messages are broadcast for all flight state changes, the application would have a
complete history of the flight and its most recent state. In practice, there may be a
single system component responsible for fusing parts of a flight into a complete flight
state, a shown below:

Figure 21 - Compiling Complete Flight State by Fusing Partial States

4.2 Message Fusion
Since message data is initially specified in small increments, it must be possible to
merge (“fuse”) the individual data messages into a composite message that contains
the complete flight state. It is impossible to fuse flight data if flights cannot be
correlated, so every flight message must contain a Globally Unique Flight Identifier
(“GUFI”, see Section 3.4.11).

4 In FIXM v1.0, only the FlightPlan section is completely specified.

<flight>
 <flightPlan>
 <departure>
 ...
 </departure>
 </flightPlan>
</flight>

<flight>
 <flightStatus>
 <position>
 ...
 </position>
 </flightStatus>
</flight>

<flight>
 <surface>
 <taxiway>
 ...
 </taxiway>
 </surface>
</flight>

ERAM

TFMS

ASDE-X

FUSION

<flight>
 <flightPlan>
 <departure>
 ...
 </departure>
 </flightPlan>
 <flightStatus>
 <position>
 ...
 </position>
 </flightStatus>
</flight>
 <surface>
 <taxiway>
 ...
 </taxiway>
 </surface>

 Page 25 of 71

4.3 The FIXM AbstractMessage Type
The most basic of FIXM messages is the AbstractMessageType. As the name
implies, it is an abstract type that contains only the message wrapper and metadata,
with no payload. The AbstractMessageType is never instantiated itself, but serves as
a parent from which all other message types derive.

4.4 The FIXM MessageCollection Type
FIXM provides a special collection message type, whose purpose is to wrap other
messages for efficient transportation and parsing. The MessageCollection has some
special semantics: contained message may have missing or incomplete metadata,
and implicitly inherit the container’s metadata unless they override it.

4.5 The FIXM DeltaMessage Type
In practice, sequential messages about a flight may differ in only a few characters:
for instance, sequential flight status messages from TFMS might differ only by the
latitude, longitude, and time of the flight’s progress. In this situation, it is inefficient to
retransmit the whole message content.
For this situation, FIXM provides a special message type called the “delta message.”
Delta messages do not carry a payload as do normal messages. Instead, they
contain:

• A reference to a preceding message via its GUMI
• A list of “deltas”, each of which identifies a single changed element of the

preceding message, and its new value. The identification is actually the Xpath
from the message root to the changed element, and the new value is
expressed in XML, so this mechanism can be used quite generally.

Given a prior flight state and a delta message, an application can update the flight
state, using the deltas, to provide the most recent flight state.
The delta mechanism relies on synchronization of flight state between the producer
of the delta message and the receiver of the message, so applications that produce
delta messages should arrange to periodically broadcast their full flight state to
synchronize with other applications.

4.6 The FIXM FlightMessage Type
FIXM provides a generic message type, FlightMessageType, which extends from
AbstractMessageType, and carries a FIXM FlightType object as its payload. If the
application needs to transmit any information contained in the Flight object, or in any
of its dependents, it should use this message type directly.

 Page 26 of 71

5 FIXM Extension Model
The FIXM models and schemas are constructed to support a “core and extension”
model of development. The “core” schemas are developed and maintained only by
the FIXM data modeling group, currently at MIT Lincoln Laboratory, who are solely
responsible for their content and structure. But the FIXM model also supports
extension models and schemas that may be developed by the data modeling group
or by outside agencies, and used in conjunction with the core. This section discusses
the role of extensions, the life cycle of an extension, and relation of extensions to the
core and to each other.

5.1 FIXM Core
The FIXM core model and schemas contain the ICAO information about flights: the
information that one would expect every flight to share, regardless of its airline,
nationality, owner, or any other characteristic. Examples of this universal data:

• Flight identity (GUFI, aircraft Identifier, etc)
• Flight operator (airline, private, government, etc)
• Flight aircraft characteristics
• Flight plan and flight plan updates
• Flight status and location
• Flight delays and cancellations
• Flight emergencies.

Certainly, not every flight expressed in FIXM notation will have all of these attributes:
only delayed flights will have delay information, only flights in trouble will have
emergency information. But this information is potentially applicable to all types of
flights, without exception.
The FIXM core started as a small nucleus: simply flight identification and the ICAO
2012 flight plan information; but more flight information is being added, and will be
added, to the core as understanding and requirements of flight management
increase. The decision of whether a given datum belongs in the core is often
complex and may involve consultation with experts or developing prototypes, or
other ways of evaluation, but the final decision of whether to include a datum in the
core rests with the FIXM data modeling group..

5.2 FIXM Extensions
In contrast to the core data some information applies selectively to some flights but
not others. This class of information is modeled in FIXM “extension” models and
schemas. There is no physical difference between core and extension schemas, but
extensions may be included or excluded from an application, depending on the data
that it requires or provides. Some examples of extension data:

• ASDE-X surveillance information is useful only to applications that deal with
airport airspace and surface movement, and not to applications that manage
flight plans or track flights.

 Page 27 of 71

• Surface movement information (runway assignment, taxi routing, etc.) is
relevant only to applications that predict and improve airport operations

• NAS-specific information is relevant only to flights operating in the United
States, and not to flights operating in Europe.

• Vendor-specific information that supports a particular application or system. 5
• Data under consideration for inclusion into the FIXM core.

In all of these cases, information may be added to or subtracted from the flight’s
record based on its characteristics, where it is operating, the characteristics of the
airport, or other attributes that may vary from one flight to the next. All of these
situations call for the data and schemas to be developed as FIXM extensions.

5.3 Merging Extensions into the FIXM Core
Occasionally, it will be advantageous to merge the model and schemas contained in
an extension into the FIXM core and to treat it as universal flight data. Some of these
situations:

• The extension represents an experimental model put forth by the FIXM
modeling group (see above) that has passed its evaluation.

• The model in the extension is recognized to be so universally applicable (or
almost universally) that it should be moved to the core models.

• The model in the extension enriches existing models and schemas in the
core, and the enrichments should become universal.

In these cases, the FIXM data modeling group, after consultation with the FIXM
sponsors and other FIXM participants, will physically transfer the extension’s
conceptual and logical models, and the schemas, into the FIXM core models and
schemas. In this process, the models and schemas may be adapted to better fit with
the structure of the core, and this adaptation may affect some existing applications,
so the merging is an activity to be carefully planned and rolled out.

5.4 Removing Elements from the FIXM Core
From time to time, it will be necessary to remove data elements from the FIXM core,
either because they are no longer in use, or because they are superseded by later
additions. Since some applications will depend on the elements, deletions will
happen in a three-step process:

1. Publish intent to delete and solicit comments
2. Mark the element “deprecated” for one cycle of the schemas to give

applications time to adjust.
3. Delete the item in the next release.

5 In this case, there is no requirement that the information be expressed as an extension but, if the
vendor so chooses, it becomes subject to the same rules and processes as other extensions.

 Page 28 of 71

5.5 Characteristics of Extensions
The size and content of extensions is expected to vary widely from simple value
extensions to complete new sub-models, but all well-formed extensions share these
characteristics:

• The extension information is represented as a conceptual model, a logical
model, and one or more XSD schemas.

• Whenever an extension datum embodies a type expressed in the core, that
type is re-used in the extension.

• When an extension datum is a variation of a type expressed in the core, the
extension type inherits from the core type, or otherwise extends it, rather than
defining a completely new type.

• The extension models and schemas strictly follow the FIXM “best practice”
rules described in the FIXM Developer’s Guide.

• The extension documentation contains any required addenda to the FIXM
documentation required to understand and use the extension.

• The extension has its own XML namespace to prevent name collision with
other extensions or the core. If the extension is intended for eventual inclusion
in the core, the name space URL is an extension of the FIXM base URL.

5.6 Modeling the Extension Data using UML
Building any FIXM extension should begin with modelling the data in UML. The FIXM
schemas were developed using Enterprise Architect 9.0.908 from Sparx Systems (
Reference 5). If you are using that tool or an equivalent tool, you can import the
FIXM UML model, and use the existing model structures to build your extension
model.
In any case, follow the explicit UML rules described in Section 2: FIXM UML Model
so that the extension model blends well with the existing FIXM models. See
Reference 1: FIXM Primer (including FICM conceptual model) for an introduction to
the FIXM models. Try to avoid:

• Duplicating data types
• Referring to data in other extensions
• Defining data types that redefine existing data structures.

5.7 Implementing the Extension Schemas
FIXM Extensions are ultimately expressed in one or more XSD files. This section
describes the rules for creating schemas that work well with the rest of the FIXM
schemas.

5.7.1 Follow the FIXM Schema Conventions
Tne extension XSD file should follow all the explicit and implicit conventions
described in Section 3: FIXM XML Schema. To summarize:

 Page 29 of 71

• Follow the FIXM SCHEMAS naming conventions
• Choose a namespace URL for your schemas and make them available

through a catalog at that URL.
• Divide your logical schema into physical schemas of manageable size, each

of which addresses a logically distinct regime.

5.7.2 Using the FIXM Base Types
The FIXM base objects (namespace “base:”) are carefully crafted to support flight
data at the most basic level. Study them carefully and use them whenever possible,
because your schemas will interoperate with existing FIXM flight schemas if they
share basic types.

• Most of your complex types should extend the base:AbstractFeatureType if
the contained information should always be treated as an atomic unit.

• If you need to express a 2D location, you will almost certainly find a suitable
type in the baseLocation schema.

• If you need to represent counts or quantities of something, search the types in
the baseTypes schema for the appropriate measurement type, and use it. If
you need to derive your own measurement type, follow the pattern of the
FIXM base quantities.

• If your object contains free text field (that is, a string that does not adhere to a
specified format) it should use the FreeTextType defined in the baseTypes
schema, either directly or by extending it.

• If you need to specify a time instant, a time span, a time duration, or anything
else having to do with time, consult the FIXM baseTime schema for a suitable
type.

• If you need to create your own time type, try to extend an existing FIXM base
type. If there is no suitable FIXM base type to extend, follow the pattern set by
the FIXM time types and base your type on the xsd:dateTime basic XSD type.

• If you have a situation that truly requires a new basic data type, contact the
FIXM support team to arrange for it to be integrated with the FIXM base
objects.

5.7.3 Using the FIXM Schema Types
Similarly, the more you can re-use the FIXM schema types, the better your extension
will integrate with the rest of the FIXM schemas, messages, and applications. It is
impossible to know what you will need from the FIXM objects, but here are some
important schemas to read:

• FxFlight
The root of all information known about a flight. One way or another, your
extension information should be accessible from this object.

 Page 30 of 71

• FxFlightPlan
All information about the times and routes taken by the flight at various stages
from planning to flight.

• FxFlightEvent
Anything that happens to a flight (disturbances, cancellations, delays, arrivals,
departures, etc) should extend from the FlightEvent type so that it can be
stored in the Flight object.

• FxAircraft
Anything that is known about the actual airframe is reachable from this type. If
your extensions concern the airframe itself, you should probably extend this
type.

• fxAgent
The objects in this schema define people and organizations in a way that
makes them interchangeable for things like flight plan submission and
approval. If your extension concerns people in any capacity, use the objects in
this schema.

• fxAerodrome
“Aerodrome” is the designation of an installation capable of handling flight
arrivals and departures. If your extension needs to mention an airport by code
or name, you should be using AerodromeReference or another object in this
schema.

5.7.4 Follow the FIXM Explicit and Implicit Conventions
Before starting a FIXM extension, read the explicit FIXM conventions in the following
chapters and adhere to them. But just as important, read the FIXM base and flight
schemas and look at their “style.” The more closely you can follow that style, the
more easily your extension will interoperate with the FIXM flight schemas.

5.7.5 Extend the AbstractExtension Object
This is probably the easiest of the methods to implement. In the baseExtension
schema is a type, AbstractExtensionType, derived from AbstractFeatureType. This
type is provided specifically to support extension schemas, because the FIXM Flight
type contains an unbounded list names “extension” of AbstractExtensionType
objects (see Figure 22). This means that, if your root types extend from
AbstractExtensionType, you can add them to the flight’s “extensions” list and they
will be carried along with the flight, to be marshaled into XML and unmarshaled out
of XML.

 Page 31 of 71

<xsd:complexType name="FlightType">
 <xsd:complexContent>
 <xsd:extension base="base:AbstractFeatureType">
 <xsd:sequence>
 <xsd:element name="gufi" type="fx:GufiType" />
 . . .
 <xsd:element name="extension"
 type="base:AbstractExtensionType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 22 - The FlightType Extension List

5.7.6 Extend One or More FIXM Types
If your extension adds information to a FIXM flight type (for example, adding a new
transponder code) then you can create a new object that extends the appropriate
FIXM object and use it wherever in the FIXM flight types that its parent is used.
<xsd:element name="ExtendedIdentification"
 substitutionGroup="fx:AircraftIdentification"
 type="fx:ExtendedtIdentificationType">
</xsd:element>

<xsd:complexType name="ExtendedIdentificationType">
 <xsd:complexContent>
 <xsd:extension base="fx:AircraftIdentificationType">
 <xsd:sequence>
 <xsd:element name="modeC" type="ModeCType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="ModeCType">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="6"/>
 <xsd:pattern value="F[0-9A-F]{5}"/>
 </xsd:restriction>
</xsd:simpleType>

 Figure 23 - Extending FIXM Objects

5.7.7 Creating Extension Message Types
If you have chosen to use the FIXM message structure to transmit your extension’s
data, then you will need to create a message type that can carry your data as a
payload. To achieve that, you should create a message type that extends the FIXM
AbstractMessage type, containing your type(s) as a payload. Use of the FIXM
message structure is optional, but adopting it makes available to you all the
mechanism of message collections, delta messages, and message meta-data.

 Page 32 of 71

<xsd:complexType name=”ExtendedMessageType">
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="msg:AbstractMessageType">
 <xsd:sequence>
 <xsd:element name="payload" type="ext:ExtendedFlightType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 24 - Creating an Extension Message Type

5.8 FIXM XSD Extension Techniques
The XML Schema Language provides many mechanisms useful for extending and
modifying schemas, but only the techniques described in this section are sanctioned
for FIXM extension schemas.

5.8.1 Adding a New Extension Name Space
Each extension should be given its own name space, declared in the
“targetNameSpace” attribute of the <schema> element. FIXM extension name
spaces are always of the form:

http://www.fixm.aero/fixm/ext/<extension name>

It is customary, but not required, to limit extension names to five characters or fewer.
The following figure illustrates the definition and use of an extension namespace for
the NAS extension.

<xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:fx="http://www.fixm.aero/fx/1.0"
 xmlns:base="http://www.fixm.aero/base/1.0"
 xmlns:nas="http://www.fixm.aero/ext/nas/1.0"
 targetNamespace="http://www.fixm.aero/ext/nas/1.0"
 elementFormDefault="qualified"
 attributeFormDefault="qualified"
 version="nas:1.0">

Figure 25 - Adding Extension Name Space

5.8.2 Adding New Extension Types
To define a type known only within the scope of this extension, simply declare it in
the normal way using <complexType> or <simpleType>. Since the new type does
not modify any core elements, no special techniques are required.

 Page 33 of 71

5.8.3 Obscuring Core Types
It may become advisable to “hide” a type defined in the core schemas from
referencing within the extension schemas. There is no reliable way to achieve this,
and it is not sanctioned as an extension technique.

5.8.4 Adding New Elements to Types
To add extra data elements to a complex type defined in the core, use XSD
extension to define a new, derived type within the extension schema. Applications
that use the extension can refer either to the base elements defined in the core, or to
the new elements in the derived type:

<xsd:complexType name="NasSegmentType">
 <xsd:complexContent>
 <xsd:extension base="fx:SegmentType">
 <xsd:sequence>
 <xsd:element name="plannedDelay" type="base:DurationType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Figure 26 - Adding an Element to a Core Type

5.8.5 Obscuring Elements from Types
There is no reliable mechanism for making core elements non-referenceable from
the extension schema, and this is not a sanctioned extension technique.

5.8.6 Changing Data Type of Elements
The data type of core elements may be changed in the extension, but only if the new
data type is an extension of the original data type. This is accomplished by
introducing an extension type as shown in section 5.8.4, and and renaming the
element in the extension type. In the following example, the “altitude” element
replaces the corresponding element in the core SegmentFlightInfoType, but
redefines it to be a NAS altitude format.

 <xsd:complexType name="NasSegmentFlightInfoType">
 <xsd:complexContent>
 <xsd:extension base="fx:SegmentFlightInfoType">
 <xsd:sequence>
 <xsd:element name="altitude" type="nas:NasAltitudeType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

Figure 27 - Changing Element Data Type

 Page 34 of 71

5.8.7 Changing Cardinality of Elements
There is no reliable mechanism to change the “minOccurs” or “maxOccurs” or
“nillable” attributes of a core element, and this is not a sanctioned extension
technique

5.8.8 Changing the Pattern of a String Type
To redefine the allowed pattern for a core SimpleType, extend the core type into an
extension SimpleType and provide the new pattern in the “pattern” attribute, then use
the extension type in place of the core type:

 <xsd:simpleType name="NasRouteTextType">
 <xsd:restriction base="fx:RouteTextType">
 <xsd:pattern value="[A-Z0-9\. \+/]+"/>
 </xsd:restriction>
 </xsd:simpleType>

Figure 28 - Changing a String Type Pattern

5.8.9 Adding Enumeration Values from a String Type
To extend a core enumeration string type by adding new enumeration values, create
an extension type containing the new values and use the XSD <union> element to
form a new type containing both the core and the extension enumeration values. In
the following example, the NasAltitudeExtensionType contains the NAS-specific
altitude type enumerations, and the NasAltitudeTypeType contains the combined
enumerations for the core and the NAS extension.

<xsd:simpleType name="NasAltitudeExtensionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ABOVE"/>
 <xsd:enumeration value="BLOCK"/>
 <xsd:enumeration value="VFR"/>
 <xsd:enumeration value="VFR_PLUS"/>
 <xsd:enumeration value="VFR_ON_TOP"/>
 <xsd:enumeration value="VFR_ON_TOP_PLUS"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="NasAltitudeTypeType">
 <xsd:union memberTypes="base:AltitudeTypeType
 nas:NasAltitudeExtensionType"/>
</xsd:simpleType>

Figure 29 - Extending an Enumeration Type

5.8.10 Removing Enumeration Values from a String Type
There is no reliable mechanism for obscuring an enumeration value defined in the
core, and this is not a sanctioned extension technique.

 Page 35 of 71

5.8.11 A Word About the XSD <redefine> Element
The XSD language provides an element type called <redefine> that is intended to
modify many attributes of inherited types, including cardinality, nillable status,
enumerations, min and max values. So, the <redefine> element could be used to
implement the restrictions described in sections 5.8.5, 5.8.6, 5.8.7, 5.8.10. However,
the <redefine> element is notriously difficult to use correctly, and produces unreliable
results in many run time XML systems, including XML Beans and JAXB.

For these reasons, the <redefine> element is not a sanctioned
extension technique for FIXM.

 Page 36 of 71

5.9 Simple Extension Example
The following figure illustrates a small extension schema that unites the examples
shown in the preceding sections. Specifically, it illustrates

• Separate name space (“nas”)
• Importing “base” and “fx” schemas for reference
• Use of extension to create new types local to the extension
• Use of extension to add new elements or redefine elements

 <xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:fx="http://www.fixm.aero/fx/1.0"
 xmlns:base="http://www.fixm.aero/base/1.0"
 xmlns:nas="http://www.fixm.aero/ext/nas/1.0"
 targetNamespace="http://www.fixm.aero/ext/nas/1.0"
 elementFormDefault="qualified"
 attributeFormDefault="qualified"
 version="0.9">

 <xsd:import namespace=”http://www.fixm.aero/base/1.0”
 schemaLocation="../../base/base.xsd"/>
 <xsd:import namespace="http://www.fixm.aero/fx/1.0"
 schemaLocation="../../fx/fx.xsd"/>
 <xsd:include schemaLocation="./nasAltitudes.xsd"/>

 <xsd:complexType name="NasRouteType">
 <xsd:complexContent>
 <xsd:extension base="fx:RouteType">
 <xsd:sequence>
 <xsd:element name="text" type="nas:NasRouteTextType"/>
 </xsd:sequence>
 <xsd:attribute name="format" type="fx:RouteFormatType"
 use="required" fixed="NAS"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:simpleType name="NasRouteTextType">
 <xsd:restriction base="fx:RouteTextType">
 <xsd:pattern value="[A-Z0-9\. \+/]+"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="NasSegmentFlightInfoType">
 <xsd:complexContent>
 <xsd:extension base="fx:SegmentFlightInfoType">
 <xsd:sequence>
 <xsd:element name="altitude" type="nas:NasAltitudeType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

</xsd:schema>

Figure 30 - Example FIXM ExtensionSample

 Page 37 of 71

6 Application Development with FIXM

6.1 Intended Audience
The information in this section is useful to anyone who needs to implement software
utilizing the FIXM schemas and is therefore geared toward software developers. In
particular, it will be useful to those writing applications that need to create FIXM flight
data, read and interpret FIXM flight data, or modify FIXM flight data. The discussions
below assume that the reader is familiar to some degree with:

• General XML notation and conventions
• XML Schema Definition (XSD) notation and conventions
• Object-oriented programming experience
• Standard Java coding practices6
• Apache XMLBeans XML binding or
• DOM XML management packages or
• SAX XML parsing packages or
• JAXB XML binding

This guide presents a number of ways to interact with the FIXM schemas
programmatically, but it is not intended to be a comprehensive software cookbook.
The reader should absorb the logic behind the examples and apply that to his or her
own situation.

6.2 Examples of FIXM Usage
The developer has a number of options for programmatically interacting with the
FIXM schemas. We will detail three separate approaches:

• DOM parsers
DOM (Document Object Model) systems such as DOM4J or Apache Xerxes
2 implement an in-memory representation of an XML document, and provide
translation between the XML text representation and the memory model. They
also provide methods for creating and modifying the in-memory document
components.

• Apache XMLBeans Object Binding
Schema binding mechanisms such as Apache XMLBeans use the XSD
schemas to generate Java access objects that facilitate access to the XML
structures through normal Java operations. Every FIXM release will contain a
JAR file with the XMLBeans bindings of the most recent schemas.

• JAXB Object Binding
JAXB is an XML object library based on Enterprise Java standard objects,

6 Although the examples shown in this document are written in Java, equivalent
concepts and software exist for C and C++.

 Page 38 of 71

rather than Apache objects. It is neither better nor worse than XMLBeans, just
an alternative. Every FIXM release will contain a JAR file with the JAXB
bindings of the most recent schemas.

The examples in the following sections are brief, but complete, Java programs that
all accomplish the same task: extracting the GUFI field from a FIXM Flight object.
They are available, along with all required libraries and test data at
http://www.fixm.aero.

6.3 DOM Parsers
DOM parsers implement a convention for interacting with objects in XML documents.
They operate on the document as a whole and allow arbitrary navigation and
modification of the XML tree. We will discuss interacting with FIXM via Apache’s
DOM4J parser library, Xerces2, specifically.
Information on how to use the Xerces2 DOM parser for reading and manipulating
schemas can be found on the Xerces2 DOM FAQ page.

package aero.fixm.examples;

import java.io.File;
import java.io.IOException;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class DomExample {

public static void main(String[] args) {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db;
 File example = new File("example.xml");
 try {
 db = dbf.newDocumentBuilder();
 Document doc = db.parse(example);
 NodeList nl = doc.getElementsByTagName("fx:Gufi");
 if (nl != null && nl.getLength() > 0) {
 Node gufiNode = nl.item(0);
 System.out.println(gufiNode.getTextContent());
 }
 else {
 System.out.println("No GUFI:");
 }
 } catch (Exception e) {
 e.printStackTrace(System.err);
 }
 }
}

 Page 39 of 71

6.4 XML Schema Bindings (Apache XML Beans)
XML schema bindings take a different approach to XML access than both DOM and
SAX by providing mappings between XML and object-oriented classes. The bindings
software uses the XML schema to compile interfaces and classes that can be used
to read and manipulate XML data using both getters and setters.

package aero.fixm.examples;

import java.io.File;
import aero.fixm.xmlbeans.fx.FlightDocument;
import aero.fixm.xmlbeans.fx.FlightType;

public class XmlBeansExample {

 public String getGUFI(File fpXml) {

 String gufi;
 try {
 FlightDocumentType fd = FlightDocument.Factory.parse(System.in);
 FlightType fp = fd.getFlight();
 gufi = fp.getGufi();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }

 return gufi;
 }
}

 Page 40 of 71

6.5 XML Schema Bindings (JAXB)
JAXB is the standard Java/XML binding technology supplied with the JavaX package
set.
package aero.fixm.examples;

import java.io.File;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

import aero.fixm.jaxb.fx.FlightType;

public class JaxbExample {

 private static final String JAXB_CONTEXT_FX = "aero.fixm.jaxb.fx";

 public String getGUFI(File flightXml) {
 JAXBContext jc;
 try {
 jc = JAXBContext.newInstance(JAXB_CONTEXT_FX);
 Unmarshaller u = jc.createUnmarshaller();
 FlightType fp = (FlightType) u.unmarshal(flightXml);

 return fp.getGufi();
 } catch (JAXBException e) {
 System.err.println(e.getMessage());

 }
 return null;
 }
}

 Page 41 of 71

Appendix A FIXM Glossary

AIXM Aeronautical Information Exchange Model

FICM Flight Information Conceptual Model

FIXM Flight Information Exchange Model

FIXM Flight Information Exchange Schema

GIS Geographic Information System(s)

GML Geography Mark-Up Language

ICAO International Civil Aviation Organization

ISO International Organization for Standardization

ISO19100 Standards for information concerning objects or phenomena
that are directly or indirectly associated with a location
relative to the Earth

OGC Open Geospatial Consortium

Scalar A quantity that is defined by its magnitude only

TC 211 Technical Committee 211

UML Unified Modelling Language

UOM Unit of Measure

WFS Web Feature Service

WMS Web Map Service

XMI XML Metadata Interchange

XSD XML Schema Definition Language

 Page 42 of 71

Appendix B FIXM Logical Model UML
The following UML class diagrams constitute the FIXM Logical Model. In order to
keep the complexity of the diagrams down and to best display the logical structure,
the following drafting conventions are adopted:

• Relationships to classes in another diagram are represented as attributes,
rather than arrows, in order to reduce the extraneous clutter in the diagram.
The semantics of attribute reference are identical to those of graphical
reference.

• Unspecified cardinalities are presumed to be [1..1].
• Because UML contains no appropriate structure for alternation, the XSD

constructs of <choice> and <union> are shown as if all the allowed
alternatives are present. The exclusion of alternatives is meaningful only in
the schemas.

 Page 43 of 71

B.1 BaseAgent - (Class diagram)

 Page 44 of 71

 Page 45 of 71

B.2 BaseAltitude - (Class diagram)

 Page 46 of 71

 Page 47 of 71

B.3 BaseLocation - (Class diagram)

 Page 48 of 71

 Page 49 of 71

B.4 BaseTypes - (Class diagram)

 Page 50 of 71

 Page 51 of 71

B.5 BaseTime - (Class diagram)

 Page 52 of 71

B.6 FxAerodrome - (Class diagram)

 Page 53 of 71

 Page 54 of 71

B.7 FxAircraft - (Class diagram)

 Page 55 of 71

 Page 56 of 71

B.8 FxAircrafCommunicationCapability - (Class diagram)

 Page 57 of 71

 Page 58 of 71

B.9 FxAircraftNavigationCapability - (Class diagram)

 Page 59 of 71

 Page 60 of 71

B.10 FxAircraftSurveillanceCapability - (Class diagram)

 Page 61 of 71

B.11 FxAircraftSurvivalCapability - (Class diagram)

 Page 62 of 71

B.12 FxFlight - (Class diagram)

 Page 63 of 71

 Page 64 of 71

B.13 FxFlightEmergency - (Class diagram)

 Page 65 of 71

 Page 66 of 71

B.14 FxFlightPlan [Part 1] - (Class diagram)

 Page 67 of 71

 Page 68 of 71

B.15 FxFlightPlan [Part 2] - (Class diagram)

 Page 69 of 71

B.16 FxFlightRoute - (Class diagram)

 Page 70 of 71

B.17 FxMessages – (Class Diagram)

 Page 71 of 71

B.18 MsgMessage – (Class Diagram)

