ATIEC 2014

4D Trajectory Scope for FF-ICE Step 1


Presented by Dr. Stéphane Mondoloni

European A-CDM Extension to FIXM v2.0

FIXM breakout session - A-CDM extension.pdf

Presented by Hubert Lepori and Carlos Fornas Fernandez, EUROCONTROL

FIXM Status Updates

ATIEC_FIXM_Status Updates_v7.pdf

Presented By: Rob Hunt, Manager, FAA, Air Traffic Organization, Technical Analysis & Operational Requirements Group


FIXM 1.1 Examples and Documentation

The attached folder contains FIXM v1.1 XML examples generated from live AFTN flight plans along with an HTML file that links to examples in the XML files as well as the FIXM via FPL document.

FIXM via FPL (Airservices Australia Application of FIXM)


The attached document is titled FIXM via FPL which was presented by Paul Chisholm, Airservices Australia, at the International FIXM Technical Interchange Meeting 1/24/13. This document presents an introduction to the Flight Information Exchange Model (FIXM) by describing the mapping between International Civil Aviation Organisation (ICAO) Filed Flight Plan (FPL) messages and FIXM flight objects.

Pacific Flight Data Object (FDO) Demonstration - Overview

Task K - Pacific FDO Demonstration Presentation FINAL

This presentation slides provides the overview and agenda of the Pacific Flight Data Object (FDO) Demonstration which was held on May 23-24, 2012 at the Florida NextGen Test Bed (FTB) located in Daytona Beach, Florida.

Pacific Flight Data Object (FDO) Demonstration - Report

Task K D28 - Pacific FDO Demonstration Final Report - FINAL v1.2_0.pdf

This is a report which summarizes the Pacific FDO Demonstration. The demonstration was held on May 23-24, 2012 at the Florida NextGen Test Bed (FTB) located in Daytona Beach, Florida.  The intent of this demonstration was to promote the goal of exercising gate-to-gate scenarios.  These gate-to-gate scenarios included the integration of surface, en route, and oceanic systems along with some newly developed demo applications emulating potential future FO-enabled systems.  The Pacific FDO Demonstration included the active participation of both domestic and international airlines and two international Air Navigation Service Providers (ANSP).  The demonstration also introduced the use of live and recorded data into the FTB demonstration environment.  


Flight Object High Level Architecture

High-level Architecture v1.pdf

This paper investigates the high-level architecture for the Flight Object. The high-level architecture maps out the overall implementation of the Flight Object across ANSPs, other stakeholders, and their systems. The central issue is how data and services will be allocated to the physical and logical components that together make up the systems that exchange Flight Object data.

Draft, version 1.0

Preliminary Engineering Analysis Report

Preliminary Engineering Analysis Report v1.0a 1Final.pdf

This document presents the results of the preliminary engineering analysis work conducted by the Volpe Center for the FAA’s NextGen Flight Object project. The engineering analysis examines issues relating to designing, developing, and implementing such an approach. The findings in this report are preliminary, and will be updated periodically until a final report is delivered in November 2012

Version 1.0

Extension Meeting Summaries

FIXM Governance

FIXM Change Management Charter v1.0

FIXM Change Management Charter v1.0.pdf

The FIXM Change Management Charter v1.0 outlines the formal change management processes required to ensure that the content and design of FIXM is unambiguously understood and endorsed by the FIXM stakeholders. This charter formalizes the FIXM governance and its operating procedures.

FIXM Strategy v1.0

FIXM Strategy v1.0.pdf

The FIXM Strategy v1.0 is the first major release of the FIXM Strategy, and was released on March 21, 2014.  This document outlines the strategic objectives for FIXM in order to guide the overall FIXM development.

Fleet Prioritization

Fleet Prioritization

Fleet Prioritization - v 1.0.pdf

Fleet Prioritization is the ability of a flight operator to express the relative priority of the flights in its fleet relative to each other. Many flight operators use proprietary algorithms to determine internal flight priorities. These algorithms may consider a flight’s load factor, how many connecting passengers that flight carries, positioning the aircraft for a more critical flight, pilot and crew availability, hazardous cargo, and aircraft maintenance schedules. Specifying fleet priority is one of several tools the flight operator may use to achieve their business objectives.

Flight Object Messaging

Flight Object Data Distribution / Messaging

FO Distribution - FO TIM.ppt

Lockheed Martin has started work on a Distribution / Publishing / Messaging white paper to assist the FAA / SJU in identifying key technical considerations related to the Publication of a FIXM Flight Object. The goal of the paper is to collect input from a team of knowledgable Systems Engineers, worldwide, who can represent majority of FIXM users, and provide the recommended methods(s) for publishing FIXM Flight Object.


Globally Unique Flight Identifier (GUFI) - Paper 3: GUFI Implementation and Transition Issues

Engineering Analysis of the Globally Unique Flight Identifier3 Final.pdf

The report examines technical issues that are likely to be encountered in the implementation of the GUFI. The report identifies several significant technical issues in the end-state GUFI environment including: what is a unique flight, who generates the GUFI, should GUFIs be used for schedule data, and what type of error processing would be needed. The report provides recommendations and guidelines for each of these issues.

Paper #3

Globally Unique Flight Identifier (GUFI) - Paper 1: Flight Data Correlation Problems and the GUFI

Engineering Analysis of the Globally Unique Flight Identifier1 Final.pdf

The report examines data correlation problems in current FAA flight data systems, and previous attempts at improving flight data correlation. The report also explores some alternative approaches to the GUFI.

Paper #1

Globally Unique Flight Identifier (GUFI) - Paper 2: GUFI Construct

Engineering Analysis of the Globally Unique Flight Identifier2 Final.pdf

The purpose of this report is to analyze the GUFI construct; that is, the format and content of the GUFI. The report presents some general definitions and goals related to the Flight Object and GUFI, then delves into a detailed exploration of past issues related to flight data correlation. The report then looks at how a GUFI might be used in the future in a Flight Object-based data exchange, and explores some of the alternative decisions that need to be made.

Paper #2

GUFI - Format v2.1 - Final

GUFI Format v2 1_Final.pdf

A collaborative effort to establish the Flight Information Exchange Model (FIXM) has been underway for several years. A key component of the flight model is a Globally Unique Flight Identifier (GUFI) that is included on every Air Traffic Management (ATM) flight data transaction to unambiguously identify the flight to which the data applies. The purpose of the GUFI is to eliminate problems that have occurred in the past when systems try to accurately correlate data that is received from many other systems. This paper discusses the format and content of the GUFI.NOTE: The GUFI format described in this document should be considered stable for all FIXM versions 3.0 and above. 

GUFI - Requirements v2.1 - Final

GUFI Requirements v2 1_Final.pdf

The Flight Information Exchange Model (FIXM) contains the data element GUFI. The purpose of the GUFI is to have an identifier that allows any Air Traffic Management (ATM) flight data to be easily and accurately correlated with any other ATM flight data. Using the GUFI, all systems can be sure they are referring to the same flight when exchanging data about that flight. This paper presents background information on general issues regarding unique flight identification, such as defining “what is a flight”, and proposes a set of GUFI requirements that can serve as input to the collaborative process defining an internationally accepted GUFI.

Modeling Guidelines and Best Practices



Following the FOIPS delivery, ICOG developed a detailed interface definition based on the FOIPS model and submitted it to EUROCAE WG59 for review and update. The resulting EUROCAE document “ED-133 Flight Object Interoperability Specification” defines the interface between different instances of civilian ATC Flight Data Processing Systems (FDPS), in support of En-route and Terminal ATC Operations.

Click here to Purchase

June 2009



The Information for a Collaborative Environment (ICE) is composed of multiple domains including the Flight and Flow Information for a Collaborative Environment (FF-ICE). This document presents a concept for the FF-ICE to be implemented during the time frame through 2025. The document has been developed with particular attention to the objective of achieving the vision outlined in the Global ATM Operational Concept (ICAO Document 9854), with requirements outlined in the ATM System Requirements Supporting the Global ATM Operational Concept (Manual on ATM System Requirements, ICAO Document 9882). As part of the Service Delivery Management (SDM) ATM component, the ATMRPP has the task of proposing a mechanism to succeed the present-day ICAO flight plan which shall be developed to enable the realization of the Operational Concept. The FF-ICE intends to define information requirements for flow management, flight planning, and trajectory management associated to the ATM operational components.

November 2010

Related Websites

AIXM (Aeronautical Information Exchange Model)

The Aeronautical Information Exchange Model (AIXM) is designed to enable the management and distribution of Aeronautical Information Services (AIS) data in digital format.

EUROCONTROL - The Flight Object

This webpage provides an overview of the ongoing work to define and implement the concept of the Flight Object in Europe.

For more information, see

WXXM (Weather Information Exchange Model)

WXXM is the proposed standard for the exchange of aeronautical weather information in the context of a net-centric and global interoperable Air Transport System (ATS).